TikTok Targeting Guide 2026
Complete guide to TikTok audience targeting. Demographics, interests, behaviors, custom audiences, lookalikes, and advanced targeting strategies for optimal ad performance.
TikTok Targeting Philosophy
TikTok's targeting approach differs fundamentally from other platforms. While Meta and Google reward precise audience definition, TikTok's algorithm performs best when given broad audiences and allowed to find the right users through its powerful recommendation engine.
The Key Insight: TikTok's For You Page algorithm is designed to discover what users want before they know they want it. Trust the algorithm—over-targeting often hurts performance more than it helps.
TikTok Targeting Spectrum:
Broad Targeting Narrow Targeting
(Recommended Start) (Use Sparingly)
│ │
▼ ▼
┌───────────────────────────────────────────────────────────────┐
│ ████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ │
│ ↑ │
│ Sweet Spot: Location + Age + 1-2 broad interests │
│ │
│ Algorithm Performance by Targeting Breadth: │
│ • Broad: Algorithm finds best converters │
│ • Medium: Good for specific demographics │
│ • Narrow: Risk of high CPMs, limited learning │
└───────────────────────────────────────────────────────────────┘Targeting Options Overview
Available Targeting Types
TikTok Targeting Hierarchy:
┌─────────────────────────────────────────────────────────────────┐
│ TikTok Targeting Options │
├─────────────────────────────────────────────────────────────────┤
│ │
│ Core Targeting Advanced Targeting │
│ ┌─────────────────────────┐ ┌─────────────────────────┐ │
│ │ Demographics │ │ Custom Audiences │ │
│ │ • Location │ │ • Customer File │ │
│ │ • Age │ │ • Website Traffic │ │
│ │ • Gender │ │ • App Activity │ │
│ │ • Language │ │ • Engagement │ │
│ │ │ │ • Lead Gen Forms │ │
│ │ Interests │ │ • TikTok Shop │ │
│ │ • Interest Categories │ │ │ │
│ │ • Purchase Intent │ │ Lookalike Audiences │ │
│ │ • Video Interactions │ │ • Value-Based │ │
│ │ │ │ • Engagement-Based │ │
│ │ Behaviors │ │ • Conversion-Based │ │
│ │ • Device Type │ │ │ │
│ │ • Network Type │ │ Retargeting │ │
│ │ • OS Version │ │ • Pixel Events │ │
│ └─────────────────────────┘ │ • Video Viewers │ │
│ └─────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────┘Demographic Targeting
Location Targeting
Geographic Options:
Country Level:
├── All countries in ad account
├── Specific countries (200+)
├── Regions/territories
└── Exclude specific countries
Regional Level:
├── States/provinces
├── Counties/regions
├── DMA (Designated Market Areas - US)
└── Prefecture/department
City Level:
├── Major cities
├── Radius targeting (from point)
├── Postal/ZIP codes (limited)
└── Custom geo-fences (enterprise)
Location Considerations:
├── Minimum audience: 1,000 users
├── Combine regions for scale
├── Urban vs rural performance varies
└── Shipping areas for e-commerceAge Targeting
| Age Range | Description | Best For | |-----------|-------------|----------| | 13-17 | Teens (requires special approval) | Games, entertainment | | 18-24 | Gen Z core | Fashion, beauty, apps | | 25-34 | Millennials | E-commerce, services | | 35-44 | Young professionals | B2B, finance, home | | 45-54 | Middle-aged | Established brands, luxury | | 55+ | Older users (smaller audience) | Specific products |
Age Targeting Strategy:
For Broad Campaigns:
├── Start: 18-54 (unless product-specific)
├── Let algorithm find converting ages
├── Analyze post-campaign for insights
└── Narrow only with data
For Specific Products:
├── Alcohol: 21+ required (legal)
├── Finance: 25+ typical
├── Gaming: 18-34 typical
├── Beauty: 18-44 typical
└── B2B: 25-54 typicalGender Targeting
Gender Options:
├── All genders (recommended for most)
├── Male
├── Female
└── Non-binary (included in "All")
Gender Strategy:
├── Default: All genders
├── Narrow only when product-specific
├── Test separately, don't assume
├── Some "gendered" products convert across genders
└── Creative can be gender-specific with broad targetingLanguage Targeting
Language Options:
├── All languages (default)
├── Specific language(s)
├── App language setting
└── Content language preferences
Recommendations:
├── Match ad language to targeting
├── Multi-language regions: test separately
├── Don't assume language = location
└── Create language-specific ad groupsInterest Targeting
TikTok's interest categories are based on user behavior, content consumption, and engagement patterns.
Interest Categories
TikTok Interest Taxonomy:
Entertainment:
├── Movies & TV
├── Music & Dance
├── Comedy & Memes
├── Gaming
├── Celebrities
└── Pop Culture
Lifestyle:
├── Fashion
├── Beauty & Personal Care
├── Fitness & Sports
├── Food & Dining
├── Home & Garden
├── Pets
└── Travel
Technology:
├── Consumer Electronics
├── Mobile Phones
├── Apps & Software
├── Smart Home
└── Tech News
Business & Finance:
├── Entrepreneurship
├── Investing
├── Career & Education
├── Small Business
└── Real Estate
Health & Wellness:
├── Mental Health
├── Nutrition
├── Fitness
├── Medical & Healthcare
└── Self-Care
Shopping:
├── Online Shopping
├── Deals & Discounts
├── Luxury Goods
├── Sustainable Products
└── Local ShoppingInterest Targeting Best Practices
Interest Strategy:
Broad Start:
├── 1-3 broad interest categories
├── Let algorithm refine
├── Monitor which interests convert
└── Expand or narrow based on data
Layering Interests:
├── OR logic within category
├── AND logic across categories
├── Example: (Fashion OR Beauty) AND (18-34)
└── Don't over-layer (limits scale)
Testing Interests:
├── Separate ad groups per interest
├── Same creative across all
├── Run for 7 days minimum
├── Compare CPA, not just CTR
└── Winner informs future campaignsPurchase Intent
Purchase Intent Signals:
In-Market Audiences:
├── Users researching products
├── Recent purchase behavior
├── Shopping-related content consumption
├── Price comparison activity
└── Product review engagement
Categories:
├── Apparel & Accessories
├── Beauty & Personal Care
├── Consumer Electronics
├── Home & Garden
├── Automotive
├── Financial Services
├── Travel
└── Education
Usage:
├── Layer with interests for precision
├── Higher CPMs, better conversion
├── Best for direct response campaigns
└── Not available in all regionsCustom Audiences
Custom Audiences allow you to target users based on your own data and their interactions with your business.
Customer File Upload
Customer File Audience Setup:
Supported Identifiers:
├── Email addresses (most common)
├── Phone numbers (with country code)
├── Mobile advertising IDs (IDFA/GAID)
├── TikTok user IDs
└── External user IDs (with pixel match)
File Requirements:
├── CSV or TXT format
├── One identifier per line
├── Hashed (SHA256) or plain text
├── Minimum: 1,000 matched users
└── Maximum: 10 million records
Match Rates:
├── Email: 40-60% typical
├── Phone: 30-50% typical
├── IDFA/GAID: 20-40% typical
├── Combined: 50-70% possible
└── Quality > quantity// Customer file preparation
const prepareCustomerFile = {
// Recommended data format
format: 'CSV',
columns: ['email', 'phone', 'country'],
// Hashing example (SHA256)
hashEmail: (email: string) => {
const normalized = email.toLowerCase().trim();
return sha256(normalized);
},
// Phone formatting
formatPhone: (phone: string, country: string) => {
// Remove non-numeric characters
// Add country code
// Hash with SHA256
return sha256(normalizedPhone);
},
// File structure
example: `
email_sha256,phone_sha256
abc123...,def456...
ghi789...,jkl012...
`
};Website Traffic Audiences
Pixel-Based Audiences:
Event Types:
├── All website visitors
├── Page viewers (specific URLs)
├── Add to cart
├── Purchase
├── Sign up
├── Custom events
└── Time on site
Lookback Windows:
├── 1 day
├── 7 days (recommended for retargeting)
├── 14 days
├── 30 days (maximum)
├── 60 days (with Events API)
└── Custom windows
Audience Rules:
├── Include: Users who did X
├── Exclude: Users who did Y
├── Frequency: Did X at least N times
├── Recency: Did X within N days
└── Combinations: X AND Y, X OR YApp Activity Audiences
App-Based Audiences:
Event Types:
├── App install
├── App open
├── In-app purchase
├── Level complete (games)
├── Tutorial complete
├── Custom events
└── Subscription
SDK Requirements:
├── TikTok SDK integrated
├── Events firing correctly
├── Privacy compliance
└── iOS ATT handled
Use Cases:
├── Re-engage lapsed users
├── Upsell to purchasers
├── Exclude current users (acquisition)
├── Target high-value users
└── Lookalikes from purchasersEngagement Audiences
TikTok Engagement Audiences:
Video Engagement:
├── Viewed any video (2s+)
├── Viewed specific video
├── Completed video
├── Shared video
├── Commented on video
└── Liked video
Profile Engagement:
├── Visited profile
├── Followed account
├── Viewed profile content
└── Clicked profile link
Ad Engagement:
├── Clicked any ad
├── Viewed ad (3s+)
├── Engaged with ad
└── Completed ad video
Lookback:
├── 7 days (most engaged)
├── 14 days
├── 30 days
├── 60 days
└── 365 days (maximum)Lookalike Audiences
Lookalike audiences find new users similar to your existing customers or engaged users.
Creating Lookalikes
Lookalike Audience Setup:
Source Requirements:
├── Custom audience (1,000+ users minimum)
├── 10,000+ users recommended
├── Higher quality source = better lookalike
├── Recent activity preferred
└── Purchasers > all visitors
Size Options:
├── 1% (most similar, smallest)
├── 2%
├── 3%
├── 5% (balanced)
├── 10% (broader reach)
└── Up to 15% available
Location:
├── Same country as source
├── Different country (expansion)
├── Multiple countries
└── Must specify target regionLookalike Strategy
Lookalike Best Practices:
Source Selection (Best to Worst):
├── 1. High-value purchasers (LTV-based)
├── 2. All purchasers
├── 3. Add to cart (no purchase)
├── 4. High engagement custom
├── 5. All website visitors
└── 6. Broad interest-based
Testing Approach:
├── Start with 1-3% lookalike
├── Test against interest targeting
├── Expand to 5-10% for scale
├── Layer with demographics only
├── Don't add interest layers (defeats purpose)
Refresh Schedule:
├── Source under 10K: Monthly refresh
├── Source 10K-100K: Bi-weekly refresh
├── Source 100K+: Weekly refresh
├── After major campaigns: Immediate refresh
└── Algorithm updates automatically (with delay)Value-Based Lookalikes
Value-Based Lookalike Setup:
Requirements:
├── Customer file with value data
├── Revenue/LTV column included
├── Minimum 1,000 users with value
└── Currency consistent
File Format:
├── identifier (email/phone hash)
├── value (numeric, revenue/LTV)
├── currency (USD, EUR, etc.)
└── country (for phone matching)
Benefits:
├── Finds users similar to high-value customers
├── Better ROAS than standard lookalike
├── Prioritizes quality over quantity
└── Improves over time with dataRetargeting Strategies
Funnel-Based Retargeting
Retargeting Funnel:
┌─────────────────────────────────────────────────────────────────┐
│ Retargeting Funnel │
├─────────────────────────────────────────────────────────────────┤
│ │
│ All Visitors (30 days) │
│ └── Exclude: Purchasers │
│ └── Message: Awareness, value prop │
│ │
│ Product Viewers (14 days) │
│ └── Exclude: Add to cart, Purchasers │
│ └── Message: Product benefits, reviews │
│ │
│ Add to Cart (7 days) │
│ └── Exclude: Purchasers │
│ └── Message: Urgency, discount, social proof │
│ │
│ Checkout Started (3 days) │
│ └── Exclude: Purchasers │
│ └── Message: Complete purchase, support │
│ │
│ Purchasers (30-90 days) │
│ └── Message: Upsell, cross-sell, loyalty │
│ │
└─────────────────────────────────────────────────────────────────┘Engagement Retargeting
Engagement Retargeting Strategy:
Video Viewers (Non-Clickers):
├── Audience: 75%+ video completion
├── Exclude: Clickers, purchasers
├── Creative: Deeper product info
├── Objective: Traffic or conversion
└── Budget: 10-15% of retargeting budget
Ad Engagers (Non-Visitors):
├── Audience: Liked, commented, shared
├── Exclude: Website visitors
├── Creative: Exclusive offer
├── Objective: Traffic
└── Budget: 5-10% of retargeting budget
Profile Visitors:
├── Audience: Visited TikTok profile
├── Exclude: Followers
├── Creative: Follow CTA + value
├── Objective: Community growth
└── Budget: 5% of retargeting budgetExclusion Targeting
Essential Exclusions
Standard Exclusion Setup:
For Prospecting Campaigns:
├── Exclude: Purchasers (all time)
├── Exclude: Current customers (file upload)
├── Exclude: Negative audiences (spam, fraud)
├── Exclude: Employees (if file available)
└── Reason: Avoid wasted spend on converted users
For Retargeting Campaigns:
├── Exclude: Recent purchasers (7-30 days)
├── Exclude: Churned/refunded customers
├── Exclude: Out-of-stock product viewers
└── Reason: Relevance and user experience
For Lookalike Campaigns:
├── Exclude: Source audience members
├── Exclude: All current customers
├── Reason: Find NET new usersTargeting by Objective
Awareness Campaigns
Awareness Targeting:
Demographics:
├── Broad age range (18-54)
├── All genders (unless specific)
├── Target locations
└── Relevant languages
Interests:
├── 2-3 broad categories maximum
├── OR logic (expand reach)
├── Don't layer too many
└── Let algorithm explore
Audiences:
├── Lookalike (5-10%) for quality reach
├── Broad prospecting
├── Exclude only converters
└── No retargeting (awareness focus)
Budget: Optimize for reach/impressionsConversion Campaigns
Conversion Targeting:
Prospecting Layer:
├── Lookalike (1-3%) from purchasers
├── High-intent interests
├── Purchase intent signals
├── Exclude all customers
└── Budget: 60% of conversion budget
Retargeting Layer:
├── Cart abandoners (7-14 days)
├── Product viewers (7 days)
├── High-engagement viewers
├── Exclude recent purchasers
└── Budget: 40% of conversion budget
Advanced:
├── Value-based lookalike
├── Time-based segmentation
├── Product-specific retargeting
└── Cross-sell audiencesTargeting Optimization
When to Expand
Expansion Signals:
Positive Indicators:
├── CPA below target with limited scale
├── Low frequency (<1.5 over 7 days)
├── Audience saturation <50%
├── Strong creative performance
└── Learning phase completed successfully
Expansion Tactics:
├── Increase lookalike % (1% → 3% → 5%)
├── Add interest categories
├── Expand age range
├── Add locations
└── Remove exclusions (except purchasers)When to Narrow
Narrowing Signals:
Negative Indicators:
├── CPA above target
├── High frequency (>3 over 7 days)
├── Low relevance/quality scores
├── Poor engagement metrics
└── Budget underspending
Narrowing Tactics:
├── Decrease lookalike % (5% → 3% → 1%)
├── Focus on top-performing interests
├── Narrow age to converting range
├── Geo-focus on performing regions
└── Add exclusions for non-convertersQuick Reference
Targeting Checklist
Campaign Targeting Setup:
□ Location set (start with primary markets)
□ Age range appropriate (18-54 default)
□ Gender: All unless product-specific
□ Language matches creative
□ Interests: 1-3 broad categories max
□ Lookalike from best source (if available)
□ Custom audience included (if retargeting)
□ Exclusions set:
□ Purchasers excluded (prospecting)
□ Recent purchasers excluded (retargeting)
□ Source excluded (lookalike)
□ Audience size: 1M+ for prospecting
□ Estimated reach: Reviewed and reasonableAudience Size Guidelines
| Campaign Type | Minimum Size | Recommended | Maximum | |--------------|--------------|-------------|---------| | Prospecting | 500K | 2M+ | Unlimited | | Lookalike | 100K | 500K-2M | 5M | | Retargeting | 10K | 50K-500K | 2M | | Custom File | 1K matched | 10K+ | 10M |
Related Documentation
- TikTok Complete Guide - Full platform overview
- TikTok Ad Formats - Format specifications
- TikTok Creative - Native content strategies
- TikTok Pixel - Conversion tracking
- TikTok Optimization - Bidding and scaling
- Meta Targeting - Compare with Meta targeting